Research Group Information Event

Discover the frontiers of chemical research! Join us for insights into the various fields of chemistry at the Chemistry Research Group Event.

Research in the Copéret-Lab

Catalysis and Sustainable Chemistry from a Molecular Approach

Xiaoyu Zhou VCS - Research Group Introduction May 22nd, 2024, Zurich

Complexity of Catalyst Materials and Challenges for Atomistic Level Understanding

Which structural features matter most and drive reactivity?

ETH zürich

J. Am. Chem. Soc. 2021, 143, 6767–6780, JACS Au 2023, 3, 2314–2322.

در Core-Aspects of Copéret Group to Extract Guiding Principles ورقبة for Homogeneous and Heterogeneous Catalysts

Surface Organometallic Chemistry (SOMC)

Example – Mono- and Bimetallic Cobalt Catalysts

From molecules to surfaces and nanoparticles

ETH zürich

Angew. Chem. Int. Ed., **2023**, 62, e⁵202314274.

Group

Spectroscopy and Microscopy

... and Solid-State NMR spectroscopy, probe molecules, chemisorption, physisorption, X-Ray diffraction, cyclic voltammetry ...

A broad array of characterization techniques are required to understand surfaces

ETH zürich

JACS Au 2023, 3, 2314–2322, Chem. Sci. 2023, 14, 12739–12746., Angew. Chem. Int. Ed., 2023, 62, e202314274

Heterogeneous Catalysis

Reactions with an impact on society and a more sustainable future

What makes a good catalyst – which structural features determine reactivity?

Linking spectroscopic / microscopic data with catalytic data

Research in the Copéret Group

From Molecular to Tailored Material Synthesis

$\begin{array}{c} \overbrace{\\ OH}\\SiO_2\end{array} \xrightarrow{N}\\Grafting\end{array} \xrightarrow{N}\\Grafting\end{array} \xrightarrow{N}\\SiO_2\end{array} \xrightarrow{H_2}\\SiO_2 \xrightarrow{SiO_2}\\SiO_2\end{array}$

Understanding Heterogenous Catalysts

State-of-the-Art Characterization

NMR DNP & High-Fields

Synchrotrons PSI & SNBL

ScopeM Environmental EM

Computation and HTE

ETH zürich

The Copéret-Lab

- Prof. Christophe Copéret
- Dr. Alexander Yakimov
- Dr. Millivoj Plodinec
- 6 Postdocs
- 18 PhD Students
- 5-15 Semester students/year
- 1-2 Master students/year
- 2 Visitors

ETH zürich

90	11	19
Th	Na	K
Thorium 232.038	Sodium 22.990	Potassium 39.098

For further questions: Xiaoyu Zhou xiazhou@ethz.ch

Interested? Reach out directly to: Prof. Christophe Copéret <u>ccoperet@ethz.ch</u>

coperetgroup.ethz.ch

Trace Element and Micro Analysis @ D-CHAB

Detlef Günther

Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich www.guenther.ethz.ch

I Trace Element and Micro Analysis @ D-CHAB

Trace Element-

ETH zürich

Main Fields of Application for Analytical Science

B. Ramkorun-Schmidt, et. al., Anal. Chem., 2015, 87, 8687. L. Hendriks, et. al., J. Anal. At. Spectrom., 2019, 34, 716-728. K. Mehrabi, et. al., Environ. Sci.: Nano, 2019, 6, 3349-3358.

Mapping/Imaging/Impact on Health

Different Concepts Instrumentation Method developments

I Major Fields of LA-ICP-MS

Chart: ETH Library (KOM)

Trace Element-

5/13/2024 4

Laser Ablation-Inductively Coupled Plasma Mass Spectrometry

Figure 1. Schematic set-up of LA inductively coupled plasma Lmass spectrometry (LA-ICP-MS).

Trace Element-Microanalysis . 0

106, 32.

37, 1.

Vienna.

I Capabilities of a Nitrogen Plasma for Solid Analysis

Ch. Neff et al., *J. Anal. At. Spectrom.*, 2021, **36**, 1750-1757

M. Schild et al, 2018, Anal. Chem. 2018, 90, 13443-13450

Rethinking Inductively Coupled Plasma Mass Spectrometry

Trace Element-

Vonderach, Hattendorf and Günther, Anal. Chem. 2021, 93, 1001–1008

I Fundamental and Applied Research

Options for Students

Semester projects

- mainly applied research

Master projects

- fundamendal and applied research

Doctoral studies (last generation)

- fundamental and applied research

ETH zürich

MORGEN

Nick Shepelin :: Scientist :: Paul Scherrer Institute

Thin Films and Interfaces Group <u>https://psi.ch/materials</u>

Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich

PAUL SCHERRER INSTITUT

Prof. Dr. Thomas Lippert Head of Group

Thin Films and Interfaces group - Methods

Pulsed laser deposition – Technique for making advanced materials atom-by-atom. High powered lasers create a plasma from a target material, which travels to a substrate and self-assembles into the desired chemical and crystalline phase.

Understanding pulsed laser deposition

PAUL SCHERRER INSTITUT

Understand diffusion kinetics in materials

Probe the composition in multilayered thin films (La0.66Ca0.33MnO3-YBa2Cu3O7 shown here)

Observe chemistry in the plasma plume

Understanding the pulsed laser deposition process enables us to engineer the chemistry, structure and functionality in the thin films

Photoelectrochemical water splitting

H2 generation by solar water splitting

PAUL SCHERRER INSTITUT

Using thin films to engineer material heterostructures with suitable optical, conductive and catalytic properties to split water molecules into H2 and O2 using sunlight

Strain engineering in thin films

Oxygen ion and proton conduction in solids for energy conversion systems (solid oxide fuel and electrolyzer cells) $(a) \qquad = a \approx a_{\text{bulk}}$ Polar materials for engineering energy storage systems with high energy density (ferroelectricity for use in capacitors)

2 nn

Solid state thin film batteries

Investigating new materials for thin film solid state batteries: potential for significantly faster charge/discharge

Understanding the behavior of thin film anode, cathode and electrolyte

Growth and investigation of all-oxide transistors with extremely low energy use for beyond-CMOS memory-in-computing applications

Growth of optimal semiconductor(La0.07Ba0.93SnO3) layer - Film growth, structural and physical property characterization

2. Low voltage switching ferroelectric (BaTiO3) layer

THzürich

Shuttle Catalysis & Skeletal Editing

Recent Adventures in the Morandi Group

Yannick Brägger

ETH zürich

Our Group

Shuttle Catalysis - Concept

Pictures from <u>https://publicdomainvectors.org</u> Fang et al. *Science*, **351**, 832-836 (2016).

EHzürich

Shuttle Catalysis – Recent Developments

How to overcome limitations of classical approach?

Use 1 e⁻ logic instead!

Dr. Tanner Jankins

EHzürich

Shuttle Catalysis – Recent Developments

Many different groups transferable!

(E) Transfer hydrobromination

(F) Transfer hydrothiolation

1w

Condition A^a

Dr. Tanner Jankins

+ ...

Many ongoing projects in our group

Skeletal Editing

Skeletal Editing – Recent Developments

Conceptual outline -

Extremely useful reaction! Can we do something like this with unactivated alkenes?

Dr. Julia Reisenbauer
Skeletal Editing – Recent Developments

Yannick Brägger

Can aza-allenium salts be leveraged for modular amination strategies?

Many follow-ups possible!

EHzürich

What kind of work can students expect?

- Organic / organometallic synthesis
- Screening
- Analytical methods (GC-FID, GC-MS, NMR etc.)
- Cool instruments: Glovebox, HPLC
- All electronic lab journals (no manual calculations!)
- Biotage (automated flash column!!)
- Own fumehood or shared with supervisor
- Contributing ideas is encouraged!
- Students have some say in which area they work

Interested?

- Contact Bill directly via E-Mail
- Try to be early (one semester in advance)

Morandi Group Website

Thanks for your attention!

Exploring New Catalyst Designs for Sustainable Organic Synthesis

Josep Mas-Roselló

Group Leader

Research group information event @ETHZ May 22nd 2024

My Chemistry Career

Green chemistry needs catalysis

- ✓ Mild conditions
- ✓ High atom-economy
- ✓ High product selectivity
- \checkmark High industrial impact

Organic catalysts for asymmetric hydrogenations

N. Shcherbakov (2nd year PhD)

L. Schefer (BSc project)

Organic catalysts for asymmetric hydrogenations

N. Shcherbakov (2nd year PhD)

L. Schefer (BSc project)

Organic catalysts for asymmetric hydrogenations

Design

Based on Frustrated Lewis Pairs (FLPs)

Chem. Soc. Rev. 2019, 48, 3592

Our design - next generation FLPs

chiral spacer

BAr₂

strong

acid

weak

base

Bioinspired ligands for copper catalysis

N. Liedtke (BSc project)

Bioinspired ligands for copper catalysis

N. Liedtke (BSc project)

Bioinspired ligands for copper catalysis

Big thanks to:

S. Sutter

(BSc project)

N. Shcherbakov (2nd year PhD)

L. Schefer (BSc project)

N. Liedtke (BSc project)

The Wennemers Group (our colleagues and hosts)

ETH zürich

Interested in joining us? Reach out!

Email: jmasrosello@ethz.ch **Group website**: https://masrosello-group.org Lab H314

Chen Group Fundamentals of Transition Metal Catalysis

Overview

- Organometallic Chemistry
- Physical Organic Chemistry
- Reaction Mechanisms
- Computational Studies

Can London Dispersion override cation-π(aryl) interactions?

Current Projects

- Gold catalyzed hydroamination
- Rhenium catalyzed alkene metathesis
- Iron catalyzed hydrogenation
- Iridium catalyzed carboxylation
- Nickel catalyzed cyclopropanation
- Iron catalyzed oxidation reactions
- Dispersion studies in bipyridines

Possible Student Projects

- Semester Projects (7 weeks full time) can be accomodate for sure
- For Masters Theses, we would need to discuss
- Experimental, theoretical or combined projects are possible

Gold Catalyzed sp3-sp3 Coupling Reactions/ Low Cohesion Energy Scaffolds

Your tasks:

- Organic Synthesis
- Organometallic Gold Synthesis
- Stoichiometric Studies

Alternative, non-fluorinated structures to fluorocarbons, since they are being phased out.

(prior experience in organic synthesis desired)

Contact: Mitar Radić HCI G204 mradic@org.chem.ethz.ch

Rhenium Catalyzed Alkene Metathesis

Your tasks:

- Organometallics Synthesis
- Catalytic Experiments
- Mechanistic Studies by ESI-MS, kinetics, NMR, etc.

Re(VII)-oxo compounds (MTO) on alumina (Al2O3) supports are highly active **heterogenous alkene metathesis catalysts.**

Mechanistic studies are impeded by a wide distribution of surface species, and very small number of active sites

Structure and nature of active sites is poorly understood

Our approach: Homogenous model systems for the heterogenous catalyst

Contact: Péter Kalapos HCI G214 peter.kalapos@org.chem.ethz.ch

Intramolecular frustrated Lewis-pairs to mimic both Lewis-acidic and basic sites

Re-activation and reactivity of an isolated off-cycle species

Gold Catalyzed Hydroamination

Your tasks:

- Synthesize bidentade ligands
- Make the Au(I)-complexes
- Test them for hydroamination

Contact: Serena Schilling HCI G218 serena.schilling@org.chem.ethz.ch

What you can learn

- Organic and organometallic Synthesis (Schlenk line, Glovebox, pressurized gases, ...)
- Working with a wide variety of analytical techniques (NMR, ESI-MS, UV-VIS, XRD, IR, ...)
- Tools for investigating reaction mechanisms (real-time MS, kinetics, KIEs, ...)
- DFT calculations and/or MD simulations

Thank you for listening!

For general questions: <u>andre.buetikofer@org.chem.ethz.ch</u> / <u>maurice.andrey@org.chem.ethz.ch</u> To apply (CV, short motivation letter, transcripts of record): <u>peter.chen@org.chem.ethz.ch</u>

Noemi Cerboni :: Laboratory of Radiochemistry :: Paul Scherrer Institut | ETH Zürich

The Laboratory of Radiochemistry at PSI (at ETHZ: Steinegger group)

VCS Research Group Introduction 2024, May 22nd, 2024

Heavy Elements

Isotope and Target Chemistry

Radionuclide Development

Heavy Elements

LRC CRS **Isotope and Target** Radionuclide **Development** Chemistry Target Development Production of new radionuclides Chemical separation and processing Theragnostics

THzürich

Project examples

Example (final project upon discussion) 100000 60 TI-202 1000 Untreated surface Hg-203 50 10000 % ပ္စ 800 Counts/0.36 keV Relative yield, $-\Delta H_{ads}^{SiO_2}$ 40 1000 **Femperature**, 600 30 100 son her and a second provide a second sec 373°C 400 20 10 200 10 Before separation 1 Ω After separation 0 30 70 0.1 0 10 20 40 50 60 200 250 300 400 450 500 Chromatography column, cm 60 Fume hood 1000 Dehydroxylated surface He 50 % ပ္ပ 800 Relative yield, 0. Carrier $-\Delta H_{ads}^{SiO_2}$ 40 **Femperature** Moisture absorber gas 600 Charcoal Cooling 30 trap 400 Sample furnage Gradient furnace 20 200 162.2°C Sample boat 10 淼 Vacuum 0 Negative temperature gradient pump 0 20 30 50 60 70 0 10 40

Page 8

Chromatography column, cm

Isotope and Target Chemistry

Uniform and radioactive thin films

Characterization

- Gamma and alpha spectroscopy
- Radiography
- SEM, EDX,
- XPS, XRD,
- RAMAN, IR,
- SIMS, AFM/STM
- Profilometry

Radionuclide Development

Thank you very much!

TH zürich

The large-scale research facilities of PSI for the production of radionuclides

DEL Technology at the Scheuermann-Lab

www.del-technology.ethz.ch

1) Syed, M., Flechsig, P., Liermann, J. et al. Fibroblast activation protein inhibitor (FAPI) PET for diagnostics and advanced targeted radiotherapy in head and neck cancers. *Eur J Nucl Med Mol Imaging* 47, 2836–2845 (2020).

Small-molecule drug discovery

DNA-encoded Chemical Libraries (DELs or DECLs)

The DNA-tag ("barcode") unambiguously identifies each molecule in the library

DNA is chemically stable and compatible with a wide range of synthetic reactions

PCR and **high-throughput DNA sequencing** enable the efficient identification of binders to protein targets of interest

DNA-encoded Chemical Libraries (DELs or DECLs)

- Collections of Millions of Compounds
- Generated by Split-and-Pool Synthesis
- Unique Identifiers: DNA-"Barcodes"
- Used in Affinity based Selections
- Widely used in Industry and Academia

Split-and-Pool Synthesis of DNA-encoded Chemical Libraries

Buller et al. (2008) *Bioorg Med Chem Lett*, **18**, 5926 Mannocci et al. (2008), *PNAS*, **105**,17670-5 Clark, M. A. et al. (2009) Nature Chemical Biology 5, 647–654

Use of DNA-encoded Chemical Libraries / selection on targets

Decurtins, W., Wichert, M., Franzini, R.M., Buller, F., Stravs, M.S., Zhang, Y., Neri, D. & Scheuermann, J. (2016) Nature Protocols 11, 764–780

- Design and Construction of DELs
- Screening for Internal Targets & Collaborators
- Development of new, DNA compatible Reactions
- Hit Validation Strategies
- Enzymatic Reactions on DNA

- Design and Construction of DELs
- Screening for Internal Targets & Collaboratorations
- Development of new, DNA compatible Reactions
- Hit Validation Strategies
- Enzymatic Reactions on DNA

.

Roche

- Design and Construction of DELs
- Screening for Internal Targets & Collaborators
- Development of new, DNA compatible Reactions
- Hit Validation Strategies
- Enzymatic Reactions on DNA

Collaboration with the Renato Zenobi's group @ ETH

- Design and Construction of DELs
- Screening for Internal Targets & Collaborators
- Development of new, DNA compatible Reactions
- Hit Validation Strategies
- Enzymatic Reactions on DNA

Collaboration with the Rebecca Buller's group @ ZHAW

The Scheuermann Lab

Chemists

Pharmacists

Biologists

Current staff:

PI, senior scientist, 2 Postdocs, 5 PhD students, 3 master students

Novel systems for sustainable biosynthesis of therapeutic natural products

Fraley Research Group

Institute of Pharmaceutical Sciences, ETH Zürich VCS Research Group Introduction 22. May 2024

Using biology to amplify the accessible chemical space for medicinal chemistry efforts

Natural products and their impact on our daily lives

Micklefield, J. Cell Chem. Biol. (2004)

Overview and introduction to our research area

Historical plant-based therapeutics

Fungal indole alkaloids

Significance of plant-based medicines

Significance of plant-based medicines

For more information:

Prof. Carl G. Hartwich's Herbal Book Collection and the Pharmacognostic Collection (both in HCI)

Our approach to sustainable production

Our approach to sustainable production

Coming full circle on the way to sustainable biotechnology

Our team has discovered a laboratory cultivable plant source for complex bioactive terpenoids.

- Heterologous system for challenging enzymatic targets such as plant cytochromes P450.
- Subsequent biochemical discovery and engineering for terpene diversification.
- Opens avenues for biotechnological production of plant-based therapeutics.

Hong, B.; Grzech, D.; Caputi, L.; Sonawane, P.; et al. *Nature*. (2022). Caputi, L.; Franke, J.; Farrow, S.C.; et al. Science. (2018) Mao, L.; Kawaide, H.; Higuchi, T.; et al. *Proc. Natl. Acad. Sci.* (2020). Forman, V.; Luo, D.; Geu-Flores, F.; Lemcke, R.; et al. *Nat. Commun.* (2022). Coming full circle on the way to sustainable biotechnology

Leveraging plant defensive mechanisms and microbial interactions for sustainable terpenoid chemistry

Ginkgolides as a prime target for biotechnological production

Ginkgo extract is one of the most popular natural supplements consumed worldwide, valued at over 10 bn USD.

Our biotechnology platform will produce its main constituents in a more sustainable manner.

Hong, B.; et al. Nature. (2022). Caputi, L.; et al. Science. (2018). Mao, L.; et al. Proc. Natl. Acad. Sci. (2020). Forman, V.; et al. Nat. Commun. (2022). Horn, A.; Pascal, A.; Lončarević, I. Crit. Rev. Plant Sci. (2021)

Acknowledgements for preliminary plant biotechnology projects

Prof. Jörn Piel – ETH Zürich D-BIOL

Collaborations Florian Knaus – ETH Zürich D-USYS

PhD students Anita Berg

D-BIOL BSc students Rachele Quaglino (and MSc) Davide Borghesi Hedwig Schultz Field support Johannes Eckert Thomas Jordan

